
Asterisk Open Source PBX/iPBX
Advanced Usage

Presented by:
Nir Simionovich

DimiTelecom Ltd

About Dimi Telecom
�� Established 2002, Established 2002, DimiDimi Telecom has been operating Telecom has been operating

in the Telecom Market as a in the Telecom Market as a VoIPVoIP retail & wholesale retail & wholesale
provider.provider.

�� Since 2003, Since 2003, DimiDimi Telecom has been heavily involved Telecom has been heavily involved
in the Asterisk and in the Asterisk and GnuGKGnuGK Open Source projects.Open Source projects.

�� DimiDimi Telecom is currently Telecom is currently DigiumDigium’’ss Gold Reseller in Gold Reseller in
Israel.Israel.

�� DimiDimi Telecom currently operates TierTelecom currently operates Tier--1 installations 1 installations
of Asterisk based appliances.of Asterisk based appliances.

What are we going to talk about?
� Voice Over IP Primer

– Signaling Protocols
– Codecs

� Voice Over IP and Asterisk
– H323 (chan_h323)
– SIP (chan_sip)
– IAX (chan_iax2)

� The NAT Traversal problem
� The Asterisk Application Gateway Interface (AGI)

– AGI Programming Basics
– AGI Simple Examples
– AGI Execution Flow and the DeadAGI concept

� Questions and Answers

Voice Over IP – VoIP for short

A Primer to Voice Over IP
� Voice Over IP (VoIP) can be described as the ability

to sample voice transmissions, packet them into well
known chunks, and transmitting them over an IP
network.

� VoIP traffic is split into 2 network transmission types:
Signaling and RTP. Signaling is usually TCP based,
while RTP is UDP based.

� Signaling is usually performed between well known
TCP ports (h323:1720, SIP:5060), while RTP uses
randomly assigned UDP ports.

VoIP Signaling: H323
� H.323 is the international standard for multimedia

communication over packet-switched networks, including LANs,
WANs, and the Internet. It was first defined by the ITU in 1996
and has been updated regularly. The most recent version is
H.323 version 5 (2003).

� H.323 was the world market leader for transporting voice and
video around the world, with literally billions of minutes of
voice/video traffic every month alone.

� H.323 is a binary stream based protocol, which means that
interoperability between vendors is hard, at times even
impossible. This is caused by the various H323 version
implementations of vendors.

VoIP Signaling: Session Initiation
Protocol (SIP)
� The Session Initiation Protocol (SIP) is the IETF standard for

the establishment of multimedia sessions. These sessions
might be used for audio, video, IM, or other real-time data
communication sessions.

� The scope of SIP is relatively broad, including the
establishment of virtually any kind of "session" between two
parties. SIP is also entirely independent of the underlying
transport, though TCP and UDP are used almost exclusively.

� Unlike its counter part, H323, SIP isn’t a binary stream signaling
protocol. SIP signaling is very similar to the HTTP protocol
standard, which makes it highly inter-operable between
vendors.

� Although H323 is the more common one, SIP is slowly
becoming a more dominant option.

� IAX is the de-facto standard VoIP protocol for Asterisk networking.
� Perhaps its most impressive feature is its transparent interoperation

with NAT and PAT (IP masquerade) firewalls, including placing,
receiving, and transferring calls and registration.

� IAX is extremely low-overhead (four bytes of header, as compared to
at least 12 bytes of header for RTP based protocols like SIP and
H.323). IAX control messages are also substantially smaller.

� IAX supports internationalization, permitting the requesting PBX or
phone to receive content from the providing PBX in its preferred
language if available.

� Supports authentication on incoming and outgoing calls (Border
Control).

� Using IAX dialplan polling, the dialplan for a collection or cluster of
PBX's can be centralized, with each PBX only needing to know its
local extensions.

� Unlike its counterparts, IAX can support trunking, giving a better
performance per Kbps ratio.

VoIP Signaling: Inter Asterisk
Exchange (IAX)

Asterisk provides internal support for the following codecs:

Asterisk also supports g729 via purchase of a licensed codec module,
either from Digium or directly from VoiceAge. G723.1 is supported as
pass-through only.

Codecs: Voice Coders, what’s
available and for what price?

Cellular Phone13 KbpsiLBC
Mr. Roboto2 KbpsLPC-10
Cellular Phone13 KbpsGSM 6.10
Poor quality32 KbpsADPCM
Phone128 KbpsLinear 16bit
Phone64 KbpsG711ulaw
Phone64 KbpsG711alaw
QualityKbpsCodec

� H323 support is not native to Asterisk, and is provided via
external channel modules.

� The 2 available modules are: chan_h323 provided by Jeremey
McNamera and chan_oh323 provided by InAccess Networks.

� Both channels are based upon the OpenH323 stack.
� Both channels use the same RTP stack, provided by Asterisk.
� chan_h323 is slightly easier to install than chan_oh323, which

requires various patches to the OpenH323 stack.
� chan_h323 provides better control for incoming and outgoing

call control. chan_oh323 reminds very much the Cisco manner
of managing VoIP dial-peers.

� Both channels are in constant development and testing, and
are known to work in production environments around the
world.

� Use what ever you feel more comfortable with!

H323: chan_h323 and chan_oh323

H323: Known issues
� As H323 is a byte stream based signaling protocol, and it’s

currently at version 4, inter-operability issues may occur.
� chan_h323 had been known to cause problems with some

versions of Cisco IOS, while chan_oh323 is known to cause
problems with other versions.

� As support for H323 is rendered via externally shared libraries,
both channels suffer from an instability factor.

� The instability would usually end up in one of the following
scenarios: Asterisk crashes with a nice core-dump to send to
the programmers, Asterisk becomes non-responsive due to
channel dead-locks.

� In the latter case, Asterisk will remain responsive to the CLI, but
will not handle any calls.

� Personal Recommendation: use only if you must, avoid if not
needed.

� SIP support is developed as a standard channel that is
provided with Asterisk.

� In comparison to H323, SIP is much more stable and inter-
operable.

� SIP inter-operability had been achieved with Cisco, SNOM,
GrandStream, Veraz, Sonus and more vendors.

� Asterisk supports SIP as a SIP registrar or a SIP agent.
� With the availability of SIP phones everywhere, SIP is

becoming the protocol of choice for iPBX installations.
� Asterisk supports SIP clients that are located behind a NAT or a

PAT network.
� The Asterisk SIP stack can operate behind a NAT firewall,

seamlessly.
� Real-Time configuration of peers and clients is available via an

internal resource.

SIP: chan_sip

� IAX is the de-facto standard for Inter Asterisk
Exchange.

� IAX is a proprietary signaling protocol, and does not
inter-operate with other vendor devices.

� IAX soft phones and IAX VoIP phone are available.
� IAX support is developed as a standard channel that

is provided with Asterisk.
� Asterisk can operate as an IAX registration server or

as a SIP UA.
� IAX is operates seamlessly behind NAT and PAT.

SIP: chan_iax2

The issue with NAT traversal
� Both SIP and H323 suffer from a lack of proper support for NAT

traversed networks.
� The problem is sourced at the fact that both protocols rely on

dynamic port allocation for RTP transmission (Voice).
� H323 handles the issue of NAT traversal with H323 Proxy

servers. SIP handles NAT traversal via utilizing STUN servers,
or via firewall piercing techniques.

� The above mentioned solution cause problems when
debugging configuration in case of problems.

� NAT traversed networks make up for about 95% of the office
and home networks around the world – for that NAT/PAT is a
serious problem when deploying VoIP networks.

Asterisk H323: NAT traversal handling

� Both chan_h323 and chan_oh323 DO NOT handle
any form of NAT traversal handling.

� For H323, NAT traversal can be achieved by utilizing
an externally installed GateKeeper in Proxy mode.

� The GnuGK project (www.gnugk.org) can operate as
a NAT Proxy for H323.

� The GateKeeper is required to be installed on the
network itself.

� The solution is hard to manage, and would usually
prove un-reliable.

Asterisk H323: To GK or not to GK

Using an H323 gatekeeper is not a must, but should we
use one?

– An H323 gatekeeper as a NAT proxy device for an H323 enabled
VoIP network.

– When your H323 gateway doesn’t support complex routing rules
well.

– When the number of routing rules is too great for a gateway to
handle.

– When several gateways need to share the same termination and
origination ports.

In any of the above situations, using an H323
gatekeeper would prove as a worth while practice, and
would lower your overall system administration efforts.

Asterisk H323: Gatekeeper
Registration (LRQ, LCF and LRJ)
� As a rule of thumb, when utilizing a gatekeeper to maintain
several endpoint connections, the practice of having the endpoints
register to the gatekeeper is good. By utilizing this method, all
endpoints will share the common gatekeeper routing policy, while
the gatekeeper has full knowledge of the location of each H323
endpoint.
� In order for a registered endpoint to send a call via the
gatekeeper, it must first issue an LRQ (Location Request) to the
gatekeeper. If the destination appears in the routing policy, it will
respond back with an LCF (Location Confirm) or an LRJ (Location
Reject) in a case where the destination is not in the policy.

Asterisk H323: Gatekeeper as an
IP2IP Gateway
� Another popular method of operation is to use a
gatekeeper as a static IP2IP gateway.
� In an IP2IP gateway mode, each termination
endpoint is statically mapped in the gatekeeper routing
table.
� The incoming endpoints should be authenticated via
an external AAA mechanism.
� In this case, the usual manner of LRQ/LCF method is
not utilized.
� Call setup is performed utilizing ISDN Q.931
messages.

� Asterisk supports a situation when it operates behind a static NAT firewall.
� The proper signaling port should be opened on the firewall (TCP 5060), and

also access to the high-udp-ports should be opened (UDP 1025-65534).
� As part of the global SIP configuration of Asterisk, the real routable IP address

of the Asterisk server should be defined.

� Once that is performed, Asterisk will replace all indications of the binded IP
address, with the external IP address defined.

Asterisk SIP: NAT traversal handling
(Asterisk Server behind NAT)

[general]
port = 5060 ; Port to bind to
bindaddr = 0.0.0.0 ; Address to bind to
externip = 200.201.202.203 ; Address that we're going to put in SIP messages if we're behind a NAT
context = default ; Default for incoming calls
srvlookup = no ; Enable SRV lookups on outbound calls
;pedantic = yes ; Enable slow, pedantic checking for Pingtel
tos=lowdelay
realm=dimitel.com

� Firewall piercing is performed when a SIP UA
connects to a remote SIP server, and keeps the
connection open at all times, in order to facilitate a
pre-known RTP port.

� Firewall piercing is not available on all SIP UAs,
however, most of them do have this function.

� Is this a good solution? As a general practice, no.
This type of configuration will increase the load on
the state tables of your firewall.

� When you have multiple SIP UAs in your internal
network, the proper way would be to establish a local
SIP registrar/proxy, and have a single point of
contact to the outside SIP gateway.

Asterisk SIP: NAT traversal handling
(SIP UA Firewall Piercing)

Generating outgoing calls via VoIP
channels
� The Asterisk dial application can support any of the installed channel

modules.
� In order to activate the dial application on a specified channel, the

channel type must be defined on the extension line. Eg:
exten => _054.,1,Dial,H323/${EXTEN}@192.168.0.1
exten => 101,1,Dial,SIP/${EXTEN}

� Once Asterisk identifies the channel type on the dial extension, it will
invoke the required channel.

� If the specified channel includes an IP location, Asterisk will attempt
to perform a direct dial to that IP number, with the information
provided.

� If an IP location is not provided, Asterisk will check it’s internally
registered VoIP UAs and peers, and will route the call to the proper
UA/peer accordingly.

Asterisk VoIP: H323 vs. SIP vs. IAX
It is a clear fact that Asterisk supports VoIP protocols for UA
connections is various methodologies. Selecting the proper
methodology or a combination of ones is entirely dependent on the
actual case.
While H323 is field proven for interconnecting with VoIP carriers, SIP
and IAX out perform it in the LAN and UA field.
Our experience with interconnecting UA’s and VoIP carriers, had
resulted in the following ‘rules of thumb’:

– UA’s should interconnect with an Asterisk server utilizing SIP or IAX.
– Interconnecting with VoIP carriers should be done utilizing SIP or H323.
– If the VoIP carrier supports IAX interconnect, that is the best method of

interconnecting.

Asterisk VoIP: User Agents Clients
PC Soft Phones Software
� Windows Based:

– X-Lite and X-Pro from X-Ten networks (in my opinion, the best
SIP UA around).

– Firefly from FreshTel networks.
– SJPhone from SJ labs.

� Linux Based:
– KPhone, a SIP phone for the KDE environment.

More SIP User Agents for the PC (Windows/Linux/Mac)
can be found at http://www.voip-info.org

Asterisk VoIP: User Agents Clients
Hardware Phones

� Cisco: Cisco 7960,7940 and ATA186 SIP phones
(Very expensive).
� SNOM: SNOM manufactures SIP phones which
are fully featured, and are competitive in pricing.
� GrandStream: GrandStream manufacture budget
SIP phones and adaptors.
� More are available at http://www.voip-info.org

AGI – Application Gateway Interface

What is AGI?
� AGI stands for “Application Gateway Interface”
� AGI is the means how application programmers can

implement external logics utilizing Asterisk.
� AGI is an application level API, which means that application

developed using AGI are not bound by the Asterisk License
and are not required to be re-distributed with the source.

� AGI is very much similar to a CGI interface, where
communications between Asterisk and your AGI program is
performed via an STDIN/STDOUT interface.

� AGI programs can be written in any programming language.

How to execute an AGI program from
the Asterisk dial plan?
� Each item in an extension is of the form:

exten => extension-number,priority,application,arguments
To launch an AGI script the application is 'agi' and the
argument is the filename of your script.

� The script:
– must be executable
– must be located in /var/lib/asterisk/agi-bin
– must be specified complete with an extension

� For example to run a Python script named 'test.py' then a
suitable extension item would be:
exten => 1,2,agi,test.py

Passing arguments to your AGI
program

� In order to pass arguments to your AGI program, you
need to define them in the extension.

� In example, to launch an AGI program with a
parameter would look like so:
exten => 1,2,agi,test.php|${CALLERID}

� In the above example, Asterisk will pass the
environment variable ${CALLERID} to the AGI
program test.php

Things to remember about using
arguments and AGI programs
� AGI scripts *always* receive two arguments. The first argument

is the full path to the script itself. The second argument is the
stuff passed in from the "exten" line

� If no argument is given on the "exten" line or if the argument
given is empty, then the argument received is an empty string

� The argument received consists of everything on the line
following the vertical bar up until a vertical bar, a semi-colon or
a comma. That means the argument may contain spaces

� Quotes, single or double, are simply taken as part of the
argument; they have no special effect

� By the time you get the argument any trailing spaces have been
deleted but leading spaces are not deleted

� SMALL TIP: If you want to pass more than a single argument in
the argument, simply create a tokenized string, and parse the
string inside your AGI program

Communicating with the Asterisk AGI
interface

� The communication method between your AGI program and
Asterisk is very simple

� Your AGI program should write to STDOUT in order to send to
Asterisk, and should read from STDIN, in order to receive
information back from Asterisk

� Commands sent to Asterisk must be terminated with a newline
character

� The result returned by AGI commands is a text string, generally
of the form: 200 Result=<number>. Some commands may
return more information in addition to the Result code

� If you send Asterisk an invalid command your result will be 510
Invalid or unknown command

� All commands return a result. Commands which don't really
need to return a result return 0 as the number

AGI program execution flow
� At script startup time Asterisk sends various pieces of

information to your script and you should read these items, via
standard input, before doing much else.

� Each item is sent on a line terminated with a newline and the
end of the list is indicated by an empty line.

� The list of items received will look something like this:
agi_request: test.py
agi_channel: Zap/1-1
agi_language: en
agi_type: Zap
agi_callerid:
agi_dnid:
agi_context: default
agi_extension: 3
agi_priority: 1

� If you need the information provided then save it; otherwise feel
free to throw it away.

Things to remember about AGI
programming
� Upon execution, Asterisk will fork an asterisk child process
to run the AGI.
� Each AGI process being run takes its toll on the system.
� Executing the “Dial” Asterisk application will halt the
currently running AGI program, till the Dial application ends.
� Executing the “Dial” Asterisk application within an AGI
application will leave the AGI process hanging in the user
space, taking its toll on the operating system resources and
user space resources.
� An AGI program is identical to a CGI-BIN interface
program, with a slight difference in the user I/O stream
operation. If your AGI input methods do not cover all
aspects of the user’s input, security issues may arise or
unexpected system responses.

AGI program example: In C
#include <stdio.h>
main() {

char line[80];
/* use line buffering */
setlinebuf(stdout);
setlinebuf(stderr);
/* read and ignore AGI environment */
while (1) {

fgets(line,80,stdin);
if (strlen(line) <= 1) break;

}
/* Send asterisk a command */
printf("SAY NUMBER 123 \"\"\n");
/* Read response from Asterisk and show on console */
fgets(line,80,stdin);
fputs(line,stderr);

}

Asterisk::AGI – A PERL Module for
Asterisk AGI programming

� James Golovich had developed a complete
library of functions to be utilized with PERL.

� For more information about using PERL for
AGI programming, go to:

http://asterisk.gnuinter.net/

AGI programming : Ala PHP Style
#!/usr/bin/php4 -q

<?php
ob_implicit_flush(true);
set_time_limit(6);
$in = fopen("php://stdin","r");
$stdlog = fopen("/var/log/asterisk/my_agi.log", "w");
// toggle debugging output (more verbose)
$debug = false;
// Do function definitions before we start the main loop
function read() {
global $in, $debug, $stdlog;
$input = str_replace("\n", "", fgets($in, 4096));
if ($debug) fputs($stdlog, "read: $input\n");
return $input;
}
function errlog($line) {
global $err;
echo "VERBOSE \"$line\"\n";
}
function write($line) {
global $debug, $stdlog;
if ($debug) fputs($stdlog, "write: $line\n");
echo $line."\n";
}

AGI programming : Ala PHP Style
(cont…)

// parse agi headers into array
while ($env=read()) {

$s = split(": ",$env);
$agi[str_replace("agi_","",$s[0])] = trim($s[1]);
if (($env == "") || ($env == "\n")) {
break;

}
}
// main program
echo "VERBOSE \"Here we go!\" 2\n";
read();
errlog("Call from ".$agi['channel']." - Calling phone");
read();
write("SAY DIGITS 22 X");
read();
write("SAY NUMBER 2233 X");
read();
// clean up file handlers etc.
fclose($in);
fclose($stdlog);
exit;
?>

AGI Command Reference
AANSWERNSWER
AAUTOHANGUP <time>UTOHANGUP <time>
CHANNEL STATUS [<CHANNEL STATUS [<channelnamechannelname>]>]
EXEC <application> <options>EXEC <application> <options>
GET DATA <filename> [<timeout>] [<max digits>]GET DATA <filename> [<timeout>] [<max digits>]
GET VARIABLE <GET VARIABLE <variablenamevariablename>>
HANGUP [<HANGUP [<channelnamechannelname>]>]
RECEIVE CHAR <timeout>RECEIVE CHAR <timeout>
RECORD FILE <filename> <format> <escape digits> <timeout> [BEEP]RECORD FILE <filename> <format> <escape digits> <timeout> [BEEP]
SAY DIGITS <digit string> <escape digits>SAY DIGITS <digit string> <escape digits>
SAY NUMBER <SAY NUMBER <numbernumber> <escape digits>> <escape digits>
SEND IMAGE <SEND IMAGE <imageimage>>
SEND TEXT "<text to send>"SEND TEXT "<text to send>"
SET CALLERID <number>SET CALLERID <number>
SET CONTEXT <desired context>SET CONTEXT <desired context>
SET EXTENSION <new extension>SET EXTENSION <new extension>
SET PRIORITY <new priority number>SET PRIORITY <new priority number>
SET VARIABLE <SET VARIABLE <variablenamevariablename> <value>> <value>
STREAM FILE <filename> <escape digits>STREAM FILE <filename> <escape digits>
TDD MODE <TDD MODE <on|offon|off>>
VERBOSE <level>VERBOSE <level>
WAIT FOR DIGIT <timeout>WAIT FOR DIGIT <timeout>

AGI Execution upon call hang-up:
DeadAGI execution

� It is possible to run an AGI program upon the hang-up of a
channel, via the “DeadAGI” program.

� In order for the dial-plan to run an AGI upon a channels hang-
up, the context accepting the call should have the hang-up
extension defined, with a DeadAGI execution path.

� Example:
exten => h,1,deadagi,test.php

� One of the issues of using DeadAGI is the fact that all variables
that had been used in the previous AGI invocation, are no
longer available. Preserving the state and affinity of the AGI
program should be done externally, via a persistent storage
(File or Database).

Sources of information about Asterisk
and AGI Programming

� http://www.asterisk.org – The Asterisk Project Web Site
� http://www.voip-info.org – An all VoIP information site with

extensive Asterisk resources.
� http://www.asterisk.org.il – The Israeli chapter of the Asterisk

project (not yet fully available).
� http://www.asterisk.co.il – The Israeli Asterisk shop, to

purchase Digium and Asterisk related hardware online (not yet
fully available).

� http://www.dimitel.com – The Dimi Telecom website, with
technical forums where you can pick our brains.

� http://asterisk.gnuinter.net - James Golovich’s PERL AGI
modules.

Thank you very much for listening

